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6 Chapter 6. Cohen—Macaulay and Gorenstein

6.1 Depth is controlled by Ext’ vanishing in initial range

I assume the above prerequisites. This is based on [Ma, Th 16.6], although
I find it clearer to start from the zero-dimensional case, that is the base of
the proof by induction:

Lemma 6.1 Let A be a Noetherian ring with ideal I. Assume that finite
A-modules M and N satisfy

(1) M # 0 and I-depth M = 0.

(2) N has Supp N = V(I). (That is, the prime ideals P with Np # 0 are
those with P D I.)

Then Hom(N, M) # 0.

In the converse direction, if I-depth M > 1 and Supp N C V(I) then
Hom(N, M) = 0.

Lemma 6.1 is the case n = 0 of [Ma, Th 16.6].

Proof (1) is the statement that every f € I is a zerodivisor of M. Then
I C |JP taken over all P € Ass M, a finite set, and by prime avoidance
I C P for some P € Ass M. Therefore M contains A/P as a submodule.
The localisation Mp contains a copy of the residue field k(P) = Ap/(PAp).

On the other hand, (2) implies that Np # 0, so also Np/(PNp) # 0 by
Nakayama’s lemma. Now Np/(PNp) is a nonzero vector spaces over k(P),
and Mp contains a copy of k(P), so there exists a nonzero k(P)-linear map
Np/(PNP) — Mp.

Thus Homy, (Np, Mp) # 0, and since this equals the localisation at P
of Hom4 (N, M), it follows that Hom (N, M) # 0.

For the converse, recall Supp N C V(I) means that I C rad(ann N)
[UCA, 7.1]. Thus every s € I has nilpotent action on N. If some s € I is a
nonzerodivisor for M, it follows that Homa(N, M) =0. O

Theorem 6.2 Let A be a Noetherian ring with ideal I. Let M be a finite
A-module. Write Ext'(N, M) for Ext'y. Equivalent conditions:

(0) I-depth M > n.



(1) Ext'(N,M) =0 for alli <n—1 and for all N with Supp N C V (I).
(2) Ext'(A/I,M) =0 for alli <n — 1.
(3) Ext!(N,M) =0 for alli <n —1 and for some N with Supp N = (I).

The case n = 0 is Lemma 6.1. If n > 1 there is an M-regular element
s1 € I, so work with the s.e.s.

0—-M3 M—M-—0, where M = M/(s;M),

and its long exact sequence

0 — Hom(N, M) — Hom(N, M) — Hom(N, M) >

— Ext!(N, M) — Ext'(N, M) — Ext'(N,M) ---.
First assume (0). The quotient M has depth > n—1, so Ext!(N, M) =0
for ¢ <n — 1 by induction. In the long exact sequence of Exts, this gives

0 — Ext" (N, M) 2% Ext" (N, M) (6.2)

(6.1)

so that sp is injective.

Now multiplication by s; on N is nilpotent because Supp N C V(I). The
s1in (6.2) can be viewed! as the contravariant functor applied to N 2 N, so
that the multiplication by s; on Ext™ ! is also nilpotent. As in Lemma 6.1,
if a map is both injective and nilpotent, the module it act on is zero.

This proves (0) implies (1), and (2), (3) are trivial.

The proof that (3) implies (0) is a straightforward induction on n. If
M satisfies (3) then Ext’(N, M) is sandwiched between Ext'*(N, M) and
Ext!(N, M) in the Ext long exact sequence (6.1), so is zero for all i < n — 2.
Therefore M has depth > n — 1 by induction, so M has depth >n. O

Corollary 6.3 Let A be a Noetherian ring, I an ideal and M a finite module
with IM # M. Then I-depth M is determined as the length of any maximal
regqular sequence in I, or by

I-depth M = inf{i | Ext'(A/I, M) # 0}. (6.3)

Two ideals Iy, Is have V(I;) = V(1) if and only if rad(/;) = rad(l2),
and then Theorem 16.6 gives I;-depth M = I>-depth M.

LThis argument uses compatibility between Ext as a covariant functor in M, and as
a contravariant functor in N. To spell that out: the s1 in (6.2) originally came from the
covariant functor in M. That is, Ext" (N, M) is H,—1(Hom(N, 1)) where M — I, is
an injective resolution; then s1: M — M gives rise to si,: I, — I,. Now in the context
of Ext*(N, M), multiplication by s; on M — I, has the same effect as s; acting on N by
premultiplication. That is N < M 2% M is the same map as N =5 N % M. And the
same for homs into I..



Ischebek’s theorem This is not really new. It rewrites the conclusion
of Theorem 16.6 for a local Noetherian ring A, m, replacing the restrictions
on Supp M in (1-3) with conditions on the dimension of A/ann N — this
involves an appeal to Krull’s Hauptidealsatz or the § = dim implication of
the main theorem on dimension.

Lemma 6.4 Let A,m be a local Noetherian ring. Assume that dim N < d
and m-depth M > n.
Then Ext'(N, M) =0 fori+d < n.

Choose a composition sequence 0 C N; C --- C N,_; C N with each
N;j/Nj_1 = A/Pj having dim A/P; < d. The exact sequences

-+ = Ext'(Nj_1, M) — Ext'(N;, M) — Ext'(A/P;, M) — - --

express Ext’(N, M) as a successive extension of the Ext’(A/Pj, M), so it is
enough to prove that

Ext'(A/P,M) =0 for i<n—maxdim(A4/P)).

Set P = P; and work by induction on d = dim A/P. For a prime ideal
P of a local ring A,m, if d = 0 then P = m, and Theorem 6.2 gives
Ext(A/I, M) = 0 for i < n as required.

For P with dim A/P > 0 there is an € m \ P (a nonzerodivisor of the
integral domain A/P). Consider

0—+A/P 2 A/P — AJ(P,z) — 0

Now dim(A/(P, z) = dim(A4/P)—1 < d—1 by dimension theory (the Haupt-
idealsatz). By induction, this gives Ext'(A/(P,z), M) =0fori+d—1 < n.
By the long exact sequence of Exts

- = Ext(A/(P,z), M) — Ext'(A/P, M) = Ext'(A/P, M) —
— Ext™" Y (A/(P,x), M) — - -

)

multiplication by  is surjective on Ext!(A/P, M) for i +d < n. Nakayama’s
lemma then implies that Ext*(A/P, M) = 0, which proves the result.

Corollary 6.5 A finite module M over a Noetherian local ring A, m has
m-depth M < dim M.



System of parameters and regular sequences Let A, m be local. Re-
call one of the characterisations of dimension: a system of parameters (s.0.p.)
is a sequence x1,...,x, € m that generates an m-primary submodule. This
means that A/(zq,...,zy,) is an Artinian quotient ring, so of finite length or
zero dimensional. We set 6(A) = minimum length of a s.0.p., and eventually
proved that §(A) = dim A.

We define A to be Cohen—Macaulay if it has m-depth A = n = dim A.
Thus A has a regular sequence in m that is a s.o.p. In geometric terms, we
can cut A down by a regular sequence to an Artinian quotient ring, with
each step the quotient by a principal ideal.

Definition 6.6 (Cohen—Macaulay) A nonzero finite A-module M over a
Noetherian local ring A, m is Cohen—Macaulay if m-depth M = dim M. The
local ring A is a CM ring if it is CM as an A-module.

The module A/(x1,...,z,) depends (of course) on the regular s.o.p.
we choose — for example, we should be able to do the exercise of proving
that A/(x3,z2,...,x,) has length s times the length of A/(x1,x2,...,zp).
However, the condition that the s.o.p. be a regular sequence is independent
of the choice. If one s.o.p. is a regular sequence, so is every other.

The length, or dimension over k = A/m of the final Hom module

Homy(k, A/(x1,x2,...,2,)) = Ext’y(k, A).

is also independent of the choice of s.o.p.

Macaulay unmixedness (1912) Cohen—Macaulay rings and modules
have miraculous properties:

Corollary 6.7 Let A be a Cohen—Macaulay ring of dimension n and I =
(1,...,xy) an ideal generated by r elements. Then A/I has dimension n—r
if and only if (z1,...,2z,) is a reqular sequence, and the quotient ring A/I
18 again Cohen—Macaulay.

If M is a Cohen—Macaulay A-module then every P € AssM has the

same height, dimension and depth:
dim(A/P) = dim M = depth M.

If M is a Cohen—Macaulay A-module and x1,...,x, a reqular sequence
for M then the quotient M /(z1,...,x,)M is again CM.

If M is Cohen—Macaulay then Mp is a CM module over Ap for every P
in Supp M, and they all have the same depth

P-depth M = depth,;, Mp.



Lots of other easy corollaries [Ma, Sect 17] on the theme of unmixedness.
[Macaulay 1912] worked with graded polynomial rings, [Cohen 1946] proved
the same result for regular local rings.

6.2 Start of Gorenstein: the 0-dimensional case

Throughout this section, (A, m, k) is local Artinian. Recall that this implies
Spec A = {m}. Define the socle of an A-module M to be the submodule

Socle M = {z € M | mx = 0}.

It is the biggest k-vector space of M. When we view £k = A/m as an
A-module, the socle is identified with Homyu(k, M) — in fact, an A-homo-
morphism ¢: k — M must take 1 € k to an element (1) € Socle M, and
(1) determines .

Example 6.8 Start with A = k[z,y]/(z"",y™"1). It is a finite dimen-
sional k-vector spaces with basis the monomials z'y/ for i < n,j < m. It is
also a local ring with maximal ideal (z,y). For ¢ < n multiplication by x is
nonzero on z'y’, and for 5 < m multiplication by y is nonzero. Therefore
Socle A is the submodule k - z"y™, and is 1-dimensional as k-vector space.
It follows that multiplication of monomials
(f,g) — coefficient of z™y™ in fg
(6.4)
= fg mod m

defines a k-bilinear perfect pairing A x A — k, with {z"~'y™7}, ; the dual
basis of AV to the basis {z'y’}; ; of A. Here AY = Homa(A4,k) (made into
an A-module by premultiplication). Under this pairing, premultiplication
in AY by z,y is the dual or transpose map of multiplication by z,y in A.
Thus A has the vector space basis, with 2 and y mapping to the right and
up, whereas the dual basis of AV has dual multiplication maps pointing left
and down:

T T T
: : : (6.5)
Yy = Ty — = a2y
T T T

2

1=z =20 == "

For a O-dimensional local ring, Gorenstein is a condition that makes
sense of this kind of self-duality in the slightly more general context, when
monomial basis in the sense of linear algebra over a field is not meaningful.



Also, dual to? the statement that A is projective, AV is an injective
A-module.

6.3 Self duality and self-injectivity of an Artinian ring

The standard textbook result is that an Artinian local ring A, m,k is in-
jective as a module over itself if and only if its socle is 1-dimensional as a
k-vector space.

Standard proof An Artinian ring is of finite length, so has a Jordan—
Holder sequence

0OcNcC--N,_.1CN;C---N,_1CA (66)

with N;/N;—1 = k for each i. The last module N,_; is necessarily the
maximal ideal N,_1 = m and the first V7 is a 1-dimension k-vector subspace
of the socle.

There are r steps, and at each the s.e.s. 0 - N;—1 — N; — k — 0 gives
a long exact sequence

0 —Homyg(k, A) — Hom(N;, A) — Hom 4 (N;—1, A)
%, Exty(k, A) — Extl(N;, A) — --- (67)
All the modules here have finite length, and (6.7) gives
((Hom a(N;, A)) — €(Hom o(Ni_1, A)) = ((Homa(k, 4)) — (im(6,)). (6.8)
Summing over ¢ gives that
Hom (A, A) = r x dimy Homa(k, A) = > £(im(5;)). (6.9)
Now we are assuming that Hom4(A, A) = A has length . We also know

that at the top end, Ext!(N,, A) = 0, because N, = A is a free A-module.

Proof of = If dimSocle A = 1 then (6.9) implies that all the ¢; = 0.
Together with Ext!(N,, A) = 0 this gives that Ext!|(k, A) = 0, and hence A
is an injective module by Baer’s criterion.?

2 believe there is more to say on this topic. Saying that injective is “categorically”
dual conceals the possibility of a more substantive module-theoretic duality.

3Recall that Baer’s criterion states that an A-module M is injective if and only if
Ext} (A/I, M) = 0 for every M and every ideal I. If A is Noetherian, this can be reduced
to requiring that ExtY(A/P, M) = 0 for every P € Spec A. In our case, there is only one
prime Spec A = {m}.



Proof of < Injective means that ExtY(M, A) = 0 so that all the §; = 0,
and then (6.9) obviously implies r = 1.

Self-duality

A third equivalent condition is a more precise form of self-duality: Any
increasing JH sequence

0C---CN_jCN;,C---CA
gives a decreasing sequence

AD---DN: ONFD---D0
that is also a JH sequence.

Here N;* = ann(N;) = [0 : N;] is the annihilator ideal of N; in A. The
inclusion N;_; C N; makes N;* C Ni-, a tautology, but there is no a priori
reason why it should always be nontrivial and of relative length 1. The argu-
ment following (6.9) means that the single condition that the ¢(Socle A) =1
already guarantees this.

Dual basis

If we assume also that A is a k-algebra (and k C A and A/m = k, with
the same k), then the symmetric bilinear map A x A — k given by mul-
tiplication (a,b) — ab mod m is a perfect pairing, so that A and AY =
Homy (A, k) are isomorphic. There is a dual k-basis as in the above example
kla, ]/ (z"H ym ).

In the more general case, each step N;_1 C N; is given by adding one
new generator n;. The conclusion is that there is an element ¢; € A that
multiplies the new generator n; to give ¢;n; a unit of A (that is, ¢g;n; ¢ m =
N,_1), but multiplies the submodule N;_; into m.

In the general case A may not contain a field. Then it does not make
sense to refer to the {n;} as a “monomial basis”.

6.4 Definition of Gorenstein

Now let (A, m, k) be a local Noetherian ring, with n = dim A > 0. The
simplest way of defining Gorenstein is to say that A is Cohen—Macaulay,
with a regular sequence z1,...,z, and that the Artinian quotient A =
A/(x1,...,xy,) is Gorenstein as discussed above in 6.2.



I don’t have time to take this discussion much further. The conclusion is
that the above definition does not depend on the choice of regular sequence
Z1,...,Zn, and that questions involving Ext’ and injective resolutions of
A-modules can be reduced to similar questions for A. One sees that A
Gorenstein is equivalent to A having finite injective dimension, with the
injective dimension equal to n = dim A. Matsumura [Ma, Theorem 18.1]
gives half-a-dozen equivalent conditions, any of which could be taken as the
definition.
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